Transformation operators for the Schrodinger equation with a linearly ¨ increasing potential
نویسندگان
چکیده
منابع مشابه
Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملOn the wave operators for the critical nonlinear Schrodinger equation
We prove that for the L-critical nonlinear Schrödinger equations, the wave operators and their inverse are related explicitly in terms of the Fourier transform. We discuss some consequences of this property. In the onedimensional case, we show a precise similarity between the L-critical nonlinear Schrödinger equation and a nonlinear Schrödinger equation of derivative type.
متن کاملHomogenization of the Schrodinger equation with a time oscillating potential
We study the homogenization of a Schrödinger equation in a periodic medium with a time dependent potential. This is a model for semiconductors excited by an external electromagnetic wave. We prove that, for a suitable choice of oscillating (both in time and space) potential, one can partially transfer electrons from one Bloch band to another. This justifies the famous ”Fermi golden rule” for th...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan
سال: 2020
ISSN: 2409-4986
DOI: 10.29228/proc.58